logo

APSU Notes


Section 1.2: Finding Limits Graphically and Numerically

Informal Definition of a Limit and First Examples

Limit: $\displaystyle{\lim_{x \to c}}$ $f(x) = L$

$c = x$ value and $L = y$ value

A limit is arbitaritly number close to $L$ by testing numbers around $c$ on it’s left and right sides.

  • Def: If a function $f(x)$ becomes arbitrarily close to a number $L$ as $x$ approaches $c$ from the right and from the left, then the limit of $f(x)$ as $x$ approaches $c$ is $L$, written as $\displaystyle{\lim_{x \to c}}$ $f(x) = L$.
  • Ex 1: Evaluate the function $f(x)=\frac{(x^2-4)}{(x-2)}$ at values near $x=2$ to estimate $\displaystyle{\lim_{x \to 2}}$ $f(x)$.

    $\displaystyle{\lim_{x \to 2}} f(x)={\frac{(x^2-4)}{(x-2)}} = \frac{(2)^2-4}{2-2} = \frac{0}{0}$

    $x$ $f(x)$
    1.9 3.9
    1.99 3.99
    1.999 3.999
    2.001 4.001
    2.01 4.01
    2.1 4.1

    So the limit of $x$ approaching 2 is about 4.

    Find the limit as $x$ approachs to 3:

    $\displaystyle{\lim_{x \to 3}} f(x)={\frac{(x^2-4)}{(x-2)}} = \frac{(3)^2-4}{3-2} = \frac{9-4}{3-2} = 5$

  • Ex 2: Estimate the limit $\displaystyle{\lim_{x \to 0}}$⁡ where

    $f(x)=\begin{cases}\frac{\cos x -1}{x} & if x\neq0 \ 4 & if x = 0 \ \end{cases}$

    $f(0) = 4$

    It’s possible for the limit not to match the actual point of the function:

    $\displaystyle{\lim_{x \to c}} f(x)\neq f(c)$

    $x$ $f(x)$
    -0.5 0.2448
    -0.1 0.04996
    -0.01 0.0049
    0.01 -0.0049
    0.1 -0.04996
    0.5 -0.2488

    So the limit of $x$ approaching 0 is about 0.

    $\displaystyle{\lim_{x \to 0}} f(x) = 0 $

Warm Up Problem

Warm up

  • Determine the value of the following limits of $f(x)$, if they exist:
    • $\displaystyle{\lim_{x \to 3}}$ $f(x) = DNE$
    • $\displaystyle{\lim_{x \to 4}}$ $f(x) = 3$
    • $\displaystyle{\lim_{x \to 6}}$ $f(x) = 1$
      • Remember that limits is the number that approaching and maybe not the number that is defined.

More Examples of Limits

  • Ex 3: Estimate $\displaystyle{\lim_{x \to 1}}$ $f(x)$ $\frac{1}{x^2-2x+1}$

    $x$ $f(x)$
    0.9 100
    0.99 10000
    0.999 1000000
    1.001 1000000
    1.01 10000
    1.1 100

    So the limit of $x$ approaching 1 does not exist. You can see this graphically:

Warm up

  • Ex 4: Find $\displaystyle{\lim_{x \to 0}}$⁡ $\frac{\lvert x\rvert}{x}$ using its graph then by simplifying the equation.

    This limit does not exist since the left and the right have different values.

Warm up

\[\lvert x \rvert=\begin{cases}\ x & if x\ge0 \\ -x & if x < 0 \\ \end{cases}\] \[\frac{\lvert x\rvert}{x} =\begin{cases}\ \frac{\lvert x\rvert}{x} = 1 & if x > 0 \\ \frac{-\lvert x\rvert}{x} = -1 & if x < 0 \\ \end{cases}\]
  • Ex 5: Fill in the tables of values to estimate the limit: $\displaystyle{\lim_{x \to 0}}$⁡ $\sin \frac{1}{x}$

    $x$ $\sin \frac{1}{x}$ $x$ $\sin \frac{1}{x}$ $x$ $\sin \frac{1}{x}$
    2/$\pi$ 1 2/3$\pi$ -1 1/$\pi$ 0
    2/5$\pi$ 1 2/7$\pi$ -1 1/5$\pi$ 0
    2/13$\pi$ 1 2/31$\pi$ -1 1/10$\pi$ 0
    2/101$\pi$ 1 2/99$\pi$ -1 1/100$\pi$ 0

    The limit does not exist because the function continually oscillates between -1 and 1 as $x\ge0$.

Why a limit may not exist or be infinite?

  1. $f(x)$ increases or decreases (not both) without bound as ${x \to c}$.
  2. $f(x)$ approaches two different numbers from the right and left sides of $c$.
  3. $f(x)$ oscillates between two fixed values as ${x \to c}$.

Lecture Videos

Handwritten Notes