
CSCI 1011 – Lab 12

Learning Outcomes
• Implement code that handles exceptions.

• Read and process data from text files.

• Write output to text files.

Required Reading

Savitch - Sections 9.1, 10.1-10.2

Instructions
1. Start NetBeans.

2. Create a new project called Lab10 with a main class called YournameLab10 with your
name.

3. Write code to create and write to an empty file.

(a) Write a public static method called openFileForWriting that takes a String
representing a file name and does the following:

• Create a new PrintWriter object using the given file name.

• If a FileNotFoundException is thrown, display an error message and
exit the program.

• Otherwise, return the PrintWriter object.

• Make sure to add import statements for java.io.PrintWriter and
java.io.FileNotFoundException.

(b) Write code in the main function to test openFileForWriting.

• Use openFileForWriting to create and open a text file (you can call it
what you like, but it should have a .txt file extension.)

• Display a message to the user that the file was opened for writing.

• Use the PrintWriter object returned by openFileForWriting to write
some lines to the file.

• Display a message to the user that output was written to the file.

• Close the file.

(c) Test the program to see if it works.

• The output should look something like this:

 Opened file testfile.txt for writing
Wrote 2 lines to testfile.txt

• To inspect the file, click the File menu, select Open File..., find the
Lab10 folder in your workspace, click on the file you created, and click
Open.

4. Write code to append to an existing file.

(a) Write a public static method called openFileForAppending that takes a
String representing a file name and does the following:

• Create a new PrintWriter object from a new FileOutputStream using
the given file name, making sure to indicate that the file is being
opened for appending.

• If a FileNotFoundException is thrown, display an error message and
exit the program.

• Otherwise, return the PrintWriter object.

• Make sure to add an import statement for
java.io.FileOutputStream.

(b) Write code in the main function to test openFileForAppending.

• Use openFileForAppending to open the text file from the previous
step.

• Display a message to the user that the file was opened for appending.

• Use the PrintWriter object returned by openFileForAppending to
write some lines to the file.

• Display a message to the user that output was written to the file.

• Close the file.

(c) Test the program to see if it works.

• The output should look something like this:

 Opened file testfile.txt for writing
Wrote 2 lines to testfile.txt

Opened file testfile.txt for appending
Write 2 lines to testfile.txt

• Check the file to see if the additional lines were added.

5. Write code to read from a file.

(a) Write a public static method called openFileForReading that takes a String
representing a file name and does the following:

• Create a new Scanner object using a new File object using the given
file name.

• If a FileNotFoundException is thrown, display an error message and
exit the program.

• Otherwise, return the PrintWriter object.

• Make sure to add an import statement for java.io.File.

(b) Write code in the main function to test openFileForReading.

• Use openFileForReading to open the text file from the previous two
steps.

• Display a message to the user that the file was opened for reading.

• Use the Scanner object returned by openFileForReading to read and
display all of the lines of the file.

• Display a message to the user that input was read from the file.

• Close the file.

(c) Test the program to see if it works.

• The output should look something like this:

 Opened file testfile.txt for writing
Wrote 2 lines to testfile.txt

Opened file testfile.txt for appending
Write 2 lines to testfile.txt

Opened file testfile.txt for reading
first line of file
second line of file
third line of file
fourth line of file
Read 4 lines from testfile.txt

• Make sure the file was not modified.

6. Write a method to read text from a file and display it to the screen.

(a) Write a method called readLinesFromFile that takes a Scanner object as a
parameter and does the following:

• Read each of the lines of the file and displays them.

• Keep track of the number of lines read and return the result.

(b) Write code in the main method to test the readLinesFromFile method.

• Replace the code in the main method that displays the contents of the
file with a call to readLinesFromFile.

• Use the value returned in the message that displays how many lines
were read.

• Add code to open, read, display, and close the file after the code for
writing lines to the empty file but before the code for appending lines
to the file.

(c) Test the program to see if it works.

• The output should look something like this:

 Opened file testfile.txt for writing
Wrote 2 lines to testfile.txt

Opened file testfile.txt for reading
first line of file
second line of file
Read 2 lines from testfile.txt

Opened file testfile.txt for appending
Write 2 lines to testfile.txt

Opened file testfile.txt for reading
first line of file
second line of file
third line of file
fourth line of file
Read 4 lines from testfile.txt

7. Write a method to read from the keyboard and write it to a file.

(a) Write a method called writeLinesToFile that takes a PrintWriter object as
a parameter and does the following:

• Display a prompt to the user to enter lines of text to write to the file
and to enter a blank line to stop entering text.

• Read lines from the keyboard and write them to a file until a blank
line is entered.

• Keep track of the number of lines written and return the result.

(b) Write code in the main method to test the writeLinesToFile method.

• Replace the code in the main method that writes lines to the empty file
with a call to readLinesFromFile.

• Use the value returned in the message that displays how many lines
were written.

• Do the same for the code that appends lines to the file.

(c) Test the program to see if it works.

• The output should look something like this:

 Opened file testfile.txt for writing
Enter the text you want to write to the file. Enter a blank line
when you are done.
'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

Wrote 2 lines to testfile.txt

Opened file testfile.txt for reading
'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
Read 2 lines from testfile.txt

Opened file testfile.txt for appending
Enter the text you want to write to the file. Enter a blank line
when you are done.
All mimsy were the borogoves,
And the mome raths outgrabe.
Wrote 2 lines to testfile.txt

Opened file testfile.txt for reading
'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.
Read 2 lines from testfile.txt

8. Hand in your source file, YournameLab12.java to the D2L assignment dropbox
called Lab Assignment 12.

	Learning Outcomes
	Required Reading
	Instructions

